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Abstract Earliness, an adaptative trait and factor of
variation for agronomic characters, is a major trait
in plant breeding. Its constituent traits, photoperiod
sensitivity (PS), vernalization requirement (VR) and
intrinsic earliness (IE), are largely under independent
genetic controls. Mapping of major genes and quanti-
tative trait loci (QTL) controlling these components is in
progress. Most of the studies focusing on earliness
considered it as a whole or through one (or two) of its
components. The purpose of this study was to detect and
map QTL for the three traits together through an
experimental design combining field trials and controlled
growth conditions. QTL were mapped in a population of
F; recombinant inbred lines derived by single-seed des-
cent from a cross between two French varieties, ‘Renan’
and ‘Récital’. A map was previously constructed, based
on 194 lines and 254 markers, covering about 77% of the
genome. Globally, 13 QTL with a LOD >2.5 were de-
tected, of which four control PS, five control VR and
four control IE. Two major photoperiod sensitive QTL,
together explaining more than 31% of the phenotypic
variation, were mapped on chromosomes 2B and 2D, at
the same position as the two major genes Ppd-BI and
Ppd-D1. One major VR QTL explaining (depending on
the year) 21.8-39.6% of the phenotypic variation was
mapped on 5A. Among the other QTL, two QTL of PS
and VR not referenced so far were detected on 5SA and
6D, respectively. A VR QTL already detected on 2B in a
connected population was confirmed.
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Introduction

Earliness can be considered as an adaptative trait
(Worland 1996) and it is one of the main factors of
variation when studying agronomic characters. Conse-
quently, it is a major trait to consider in plant breeding.
Progress in its understanding could have great conse-
quence in the latter area.

Earliness is a complex trait that is often characterized
with only a synthetic measure: heading time or flowering
time for classical sowing dates. For a more efficient
control, it is necessary for breeders to more finely
characterize earliness. Earliness may be partitioned into
its three components: photoperiod sensitivity (PS)
(Garner and Allard 1923), vernalization requirement
(VR) (T.D. Lysenko in 1928) and IE (Yasuda and Shi-
moyama 1965). Intrinsic earliness (IE) may be defined as
the earliness inducing differences between varieties in
developmental rate, independent of day length and
vernalization response.

During the 1970s and 1980s, using Mendelian and
cytological approaches, geneticists located most of the
main genes controlling earliness components in wheat
(Law 1987). Then, using aneuploidy in wheat, two ho-
meologous major genes sets have been studied: the Ppd
series, located on the group 2 chromosomes, controlling
sensitivity to photoperiod (Welsh et al. 1973; Scarth and
Law 1983; Sharp and Soltes-Rak 1988) and the Vrn
series, located on the group 5 chromosomes, controlling
VR (Pugsley 1971, 1972; Law et al. 1978; Maystrenko
1980). Sprayed over the genome, other genes controlling
one of these two traits or IE, with minor effect, have
been identified (Scarth and Law 1983; Hoogendoorn
1985).

In the 1980s, simultaneous development of molecular
biology aspects and theory of QTL detection allowed
large progress in this area. Markers were then used to
describe DNA variability. RFLP markers (Soller and
Beckman 1982; Lander and Bostein 1989) were
progressively supplanted by highly numerous and



polymorph markers such as RAPD, AFLP and micro-
satellites. After marker mapping, association of genome
region with quantitative traits can be tested to detect
QTL. Simple marker analysis, interval mapping (Lander
and Bostein 1989) using flanking-marker regression
method (Haley and Knott 1992), composite interval
mapping [(CIM) Jansen and Stam 1994; Zeng 1994] and
multi-trait analysis (Jiang and Zeng 1995) were methods
successively developed to detect QTL. Such methods are
now largely used in revealing regions of chromosome
including genes involved in the control of a trait.

As a direct issue of the cytogenetical works, in
wheat, QTL and gene mapping were first essentially
focused on specific chromosomes, often using single-
chromosome recombinant lines. They concerned
mainly the group 5 chromosomes and VR. Galiba
et al. (1995) and Kato et al. (1998, 1999) on 5A,
Miura et al. (1992); Barrett et al. (2002); Toth et al.
(2003); Leonova et al. (2003) on 5B and Kato et al.
(2001) on 5D are examples of important papers on the
topic. Only Worland (1996) was interested in devel-
oping such analysis of PS on 2D. Few authors used a
global approach on the whole genome. In barley,
Laurie et al. (1995) considered PS, spring habit and IE
together, whereas Borner et al. (2000) focused on IE.
In wheat, Sourdille et al. (2000) studied PS and
IE. Shindo et al. (2003) investigated the three earliness
components together by wusing a Triticum aes-
tivum X Triticum spelta cross. Other authors worked
on heading or flowering time as an easily measurable
trait when analyzing other agronomic traits (Borner
et al. 2002; Gervais et al. 2003; Kulwal et al. 2003).
They studied plants grown in one condition, and then
they detected QTL for only one of the three earliness
components or for a mixture of those components.

The purpose of this study was to detect and map QTL
for earliness components in an F; recombinant inbred
line (RIL) bread wheat population, using a design
mainly developed in field. The three earliness compo-
nents were then analyzed together on wheat agronomic
material. Thus, several specific QTL have been found for
each of the three components. Existence of some segre-
gating major genes is confirmed and some not referenced
so far QTL are described.

Materials and methods
Plant material and growth conditions

A population of 194 F; RILs obtained by single-seed
descent (SSD) lines was produced from the
‘Renan’ x ‘Récital’ cross. For classical field sowing,
‘Recital’ is an early variety, while ‘Renan’ is a fairly late
one. The SSD population together with the parents were
characterized in field experiments at Estrées-Mons (lat-
itude: 49°52°44”), INRA, northern France. Heading
Date (HD) was registered over 3 years (1999/2000-2001/
2002), when half of the ears totally emerged from the
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leaf sheath. In October 1999, the 194 RILs were sown in
6.5-m” plots with two replicates. During the two fol-
lowing years, the design consisted of four field sowing or
planting dates: 1 October sowing, 1 March sowing and 2
May plantings. For October and March sowings, two
rows of 3 m, 18 cm apart, were sown per genotype. In
May, unvernalized and previously artificially vernalized
plants were planted. For the vernalized treatment, seeds
were imbibed during 3 days at 19°C and then trans-
planted in 38-cm diameter lumps of peat. After 1 day,
they were settled at 5.5°C under 8 h of light, using flu-
orescence lamps for 8 weeks. Unvernalized plants,
instead of being placed at 5.5°C, were grown in a
greenhouse at a mean daily temperature of 14.2°C. In
May, when planting in field, vernalized and unvernalized
plants had cumulated roughly the same mean daily
temperature.

Earliness components evaluation

Standard screen air temperature was registered 2 m
above the ground.

PS was estimated by considering HD for the October
sowings; October is a classical date for winter bread
wheat in the north of France. Mean temperature in
Estrées-Mons at this period was 9.5°C, allowing a
completely efficient vernalization. At sowing, day length
was about 10 h. Decreasing day length was highly lim-
iting. HD for such a sowing reflects mainly PS (Masle
et al. 1989).

VR was characterized by analyzing the results of the
March and May plantings. In March, the rapid
increasing day length was about 12.5 h at sowing, and
the mean daily temperature was §°C. These values were
15 h and 13°C for the May planting. For such a sowing,
vernalization is the main factor controlling development
(Masle et al. 1989). The May planting with unvernalized
plants is a useful tool to perform an all-or-none
screening of the genotypes: genotypes that headed, de-
spite a lack of vernalizing temperature, and genotypes
that always stayed in a vegetative state. In order to have
a continuous ranking of the genotypes for VR, HD
values for the March sowing, which provide only a
partial natural vernalization, were compared to HD
values for fully vernalized plants. For this purpose, as
proposed by Kato and Yamashita (1991), a ratio was
estimated as HD from the first of June, obtained after
artificial vernalization divided by HD from the first of
June for the March sowing. The lower the ratio was, the
more delayed was the HD due to incomplete field ver-
nalization. A zero value was assigned for genotypes that
never headed for the March sowing.

Masle et al. (1989) suggested using the vernalized
May planting to estimate IE. Indeed, under such a
condition, the rather long day length was considered as
not limiting, and vernalization was artificially fully en-
sured. By definition, IE is independent of photoperiod
and vernalization aspects. Nevertheless IE and PS
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measures were correlated; thus, we were led to transform
them.

Statistical analysis

The Pearson correlation coefficients between years or
traits were estimated using the PROC CORR procedure
of the SAS Institute (1991) software. Replicate and/or
year and genotype effects were studied by analysis
of variance (ANOVA) with the PROC GLM procedure
of the SAS Institute. Heritability was estimated:
hh=05%/[og 2+ (og>/r)], with 65> being the genetic
variance, o~ the residual variance and r the number of
year and within year replicates. Year and within-year
replicates were considered both as classical replicates,
which led likely to underestimate heritability.

The correlated IE and PS measures were transformed
by rotation. The two coordinate axes x (photoperiod
measure) and y (IE measure) were transformed into two
new orthogonal axes, x” and )’, through a rotation of
angle 7 as follows:

x/

/

y

sin 7
cos

cos &
—sin &

X

By choosing an adequate angle %,x” and )’ are not cor-
related. s, was estimated by using the PROC PRIN-
COMP procedure of the SAS Institute.

QTL detection and mapping
The QTL analyses were based on a map constructed

through a Genoplante project (Groos et al. 2002). For
the present analysis, 254 markers, essentially microsat-

ellite, were used, covering 2,639 ¢cM (77% of the gen-
ome), with an average of one marker each 12 cM.

One QTL analysis was performed on each trait
measured every year. For the October 1999 sowing,
mean HD over the two replicates was used. Interactions
between QTL have been tested. The QTL detection was
performed with the PlabQTL software (Utz and
Melchinger 2000). Results of the CIM method (Jansen
and Stam 1994) are presented in this paper. The step
used for interval mapping was 2 cM. A LOD score
threshold of 2.5 was considered to register a QTL as
significant. This threshold was determined with 1,000
permutations for a o value of 10%. An F-to-enter value
of 9.79 was used, resulting in selecting as cofactors,
depending on the trait and the year, three to eight
markers. Confidence intervals were set as the map
interval corresponding to a 1-LOD decline either side of
the LOD peak.

Results
Phenotypic measure of the three earliness components

Distribution of the mean values are represented on
Figs. 1, 2 and 3 for PS, IE and VR, respectively. Means
were calculated over all the years and/or replicates.

PS

Results on HD reflecting PS showed a clear contrasted
behaviour between ‘Renan’ and ‘Récital’ (Fig. 1). ‘Re-
nan’, more sensitive to photoperiod, headed 12 days
later than ‘Récital’. In the SSD population, HD had a
clear, continuous normal distribution, with a slight long

Fig. 1 Distribution of the 30
mean heading date (HD)
values for the October sowings
in the F; recombinant inbred

lines (RILs) derived from the 2%

cross ‘Renan’ x ‘Récital’

[measure of the photoperiod Récital: 140
sensitivity (PS)] 20

iy
3]

Number of lines

Y
(=]

Renan: 152

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
Heading date in Julian day
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D Lines who headed, but only the second year of experiment

Fig. 2 Distribution of the 60
mean vernalization
requirement (VR) criterion
values (HD values from the s Renan: 0
first of June under vernalized
treatment divided by HD
values from the first of June for
the March sowing) in the F; 40
RILs derived from the cross @
‘Renan’ x ‘Récital’. White bars £
are lines that headed only the s %
second year of experiment 3 1
E
=
20
Récital: 0,41
10 4
0+ T T T H T |_| T M

o o005 o1 015 02 025 03 035 04 045 05 055 06 065 07 0,75 08 085 09 095 1

tail for high values as for ‘Renan’. The range of HD was
22 days. Heritability was 0.86, and pairwise phenotypic
correlations between years and/or replicates for PS were
between 0.83 and 0.97.

IE

A normal distribution was observed in the whole pop-
ulation, with a slight relative surplus of early genotypes
(Fig. 2). The range of HD was 16 days. Heritability was
only 0.54, and the correlation between years was only
0.58.

Vernalization requirement criterion value

VR

Without artificial vernalization, no genotypes headed
when planted in May. They all required some vernali-
zation. All lines with 8 weeks of artificial vernalization
reached heading stage. By comparison, when vernaliza-
tion is partial (March sowing), only 113 SSD lines
headed in the 2 years of experiment (Fig. 3), and 18
headed only in the second one characterized by a cold
spring. ‘Récital’ headed late and with an unusual very
low number of spikes. The rest of the population, like
‘Renan’, stayed at a vegetative status. Heritability was
0.74 and correlation between years was 0.77.

Fig. 3 Distribution of the 30
mean HD values for the May
planting with 8 weeks of
artificial vernalization in the F 25
RILs derived from the cross
‘Renan’ x ‘Récital’ (measure
of the IE)
20
o
£
5
515
E
=
4
10
Récital: 175
5 -
0

174 175 176 177 178

Renan: 185

179 180 181 182 183 184 185 186 187 188 189 190

Heading date in Julian days
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New variables derived from PS and IE criteria

As a whole, VR was not correlated to the two other
traits (—0.01 and —0.09 with PS and IE measures,
respectively). On the contrary, correlation between PS
and IE was surprisingly very high (0.79). To obtain
independent coordinate axes from these two variables,
we used an angle 7%, of 0.67 rad and 0.81 rad the first and
second years of the experiment, respectively. For these
2 years, correlation between x (photoperiod measure-
ment) and x” (new variable derived from photoperiod
measurement) coordinates were 0.95 and 0.90. x repre-
sented largely the original photoperiod measurement.
Correlation between years for x” was 0.82. For IE, cor-
relations between y and )" were 0.48 and 0.39 for the
2 years of experiment, whereas correlation between
years for y” was only 0.15.

QTL detection and mapping

Several QTL were found for the various traits studied.
Among all the pairwise QTL interactions tested, none of
them had a significant effect.

PS

Four QTL with a LOD higher than 2.5 have been de-
tected on four chromosomes (Table 1; Fig. 4). Two of
them, located on 2B (PSQTL_2B) and 2D (PSQTL_2D),
were very great QTL, each explaining 13.1-20.5% of the
variation of HD, depending of the year. These two QTL
have been identified for the 3 years. The two other QTL,
located on 5A (PSQTL_5A) and 7D (PSQTL_7D), have
been detected for only 1 year. Jointly, the four PS QTL
detected in the SSD ‘Renan’ x ‘Récital’ population

explained between 31.9% and 45.8% of the whole phe-
notypic variation for PS, depending of the year.

VR

Five QTL were detected on chromosomes 2B, 5A, 5B,
5D and 6D when analyzing VR criteria (Table 1; Fig. 4).
Three of them were identified for the 2 years of experi-
ment; nevertheless, the two others had LOD scores
higher than 2 for the 2 years (Table 1). Among these
QTL, one QTL on the 5SA chromosome (VRQTL_5A)
had a strong effect on the control of VR; it explained
between 21.2% and 39.6% of the phenotypic variation.
Jointly, between 31.0% and 55.0% of the variation in
the population was explained by the five detected QTL.

IE

Four QTL, on chromosomes 2B, 2D, 5B and 7A, have
been detected as controlling IE. Compared to some PS
or VR QTL values, none of the IE QTL had a strong
effect. The two QTL on 2B (IEQTL_2B) and 2D
(IEQTL_2D) have been identified for the 2 years of
experiments (Table 1; Fig. 4). They were detected at the
same position as the two major PS QTL (PSQTL_2B
and PSQTL_2D). The QTL together described between
27.2% and 28.6% of the HD variation observed under
the vernalized treatment, with a maximum individual R?
of 12.4%.

New variables derived from PS and IE criteria

QTL detections were performed on the two new
variables obtained from PS and IE by rotation. With

Table 1 Earliness QTL detected in the F7 RILs population derived from ‘Renan’ x ‘Récital’. QTL possibly corresponding to the known

major genes Ppd and Vrn

Confidence LOD

interval (cM)

Chromosome Closest marker

(1999-2001)

R? for loci with a LOD >2.5
(1999-2001)

Allele providing
earlier heading dates®

Heading date QTL for October sowings (sensitivity to photoperiod)

2B Xgwml48 14 7.9-7.6-6.0 20.5-18.2-13.1 Re
2D Xgwm484 18 6.2-7.7-6.4 16.1-19.8-18.8 Re
SA Xgwm264c 24 2.8-1.3-0.9 5.9-.- Rc
7D pchl 8 2.1-2.6-1.1 -7.8- Rn
QTL for vernalization requirement criterion

2B Xgwm374 24 2.8-1.9 4.1-. Rc
5A Xgwm271b 10 18.8-7.1 39.6-21.8 Re
5B Xgwmo639a 34 34-23 6.8-. Rn
5D Xbedl421 14 2.2-3.0 4.7 Rn
6D Xcfd42 18 2.6-2.7 4.5-4.5 Rn
Heading date QTL for fully vernalized plants (intrinsic earliness)

Xgwml48 24 3.5-2.5 12.4-7.2 Rc
2D Xgwm261 28 3.2-45 8.2-11.4 Re
5B Xgwm371 26 1.9-3.9 -8.6 Rn
TA Xrz995 20 2.9-1.3 8.0-. Rn

“Alleles are ‘Renan’ (Rn) or ‘Récital’ (Rc)
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Fig. 4 Genetic map of chromosome segments containing QTL for PS, VR and IE detected in the F; RILs derived from the cross
‘Renan’ x ‘Récital’. Bold triangles are QTL detected whatever the year of experiment

the transformed photoperiod data set, the two major
PS QTL on 2B and 2D were detected on the same
position, with absolutely similar LOD and R’ values,
whereas the two other PS QTL having previously a
lower effect were not detected any more. Concerning
IE, none of the IE QTL was detected with the
transformed variable.

Globally, QTL were mapped on chromosomes 2B,
2D, 5A, 5B, 5D, 6D, 7A and 7D. For every QTL
mapped on 2B, 2D and 5A, earlier HD was associated
with the ‘Récital’ allele. Conversely, for every QTL
mapped on 5B, 5D, 6D, 7A and 7D, earlier HD were
associated with the ‘Renan’ allele.

Effect of the major QTL for PS and VR

QTL detection can provide valuable markers for assisted
selection. In such a way, it can be interesting to evaluate
the effect of the alleles of the three major QTL presented
above (PSQTL_2B, PSQTL_2D and VRQTL_5A). Al-
leles were supposed to be known through the informa-
tion at flanking markers.

PS effect

The flanking markers of PSQTL_2D were Xgwm484 and
Xgwm261. Those of PSQTL_2B were Xgwml48 and
Xgwml57a. Lines having ‘Renan’ (Rn) and ‘Récital’
(Rc) alleles at both flanking markers of PSQTL_2D had
a mean HD averaged over the 3 years of experiment of
146.3 and 141.2, respectively (Fig.5). For the
PSQTL_2B, these values were 145.8 and 141.7, respec-
tively. Thus, the mean phenotypic effect of PSQTL 2D
and PSQTL_2B were 5.1 days and 4.1 days, respectively;
in both cases, the Rc allele provided earlier HD. In
addition, Fig. 5 shows HD results when crossing geno-
typing information for these two couples of markers. A
highly significant difference of 9.1 days between extreme
groups was observed. These values can be compared to
the 22 days’ difference registered for individual HD be-
tween extreme lines of the whole population (Fig. 1).
The overall effect of interaction between PSQTL 2D
and PSQTL_2B was not significant. Nevertheless, some
particular interactions were highly significant. Indeed,
when considering the subpopulation having the Rc allele
for PSQTL_2D, the allele PSQTL _2B effect was not
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Fig. 5 Epistatic interactions
between PSQTL_2B and
PSQTL_2D detected in the F,
RILs derived from the cross

‘Renan’ (Rn) x ‘Récital’ (Rc) in e -

the same position as Ppd-BI 2 8 ZF | Rn-Rn
and Ppd-DI genes. Mean HD é R
used to estimate PS for each o = &
; e 2 o5
allelic type combinations. =P 2
*** p<0.0001, ** P<0.001, ° 8
NS non-significant difference é @ §
- (0] le}

2 Ag 2 [ Rc-Re
Z £ B
= &

Mean

Allelic type of the flanking markers of PSQTL_2D

(supposed to be Ppd-D1)

Rn-Rn Rc-Rc Mean
149.2 @ 142.4 145.8
143.3 @ 140.1 141.7
146.3 141.2

~ G ——

Rn = Renan allele; Rc = Récital allele

significant. On the contrary, for the subpopulation
having the Rn allele for PSQTL_2D, the 5.9-days allele
PSQTL_2B effect was highly significant (P <0.0001).
Now, in the case of the Rc allele for PSQTL_2B, the
allele PSQTL 2D effect on HD was 3.2 days
(P=0.0008). With the Rn allele for the PSQTL_2B, the
allele PSQTL_2D effect was highly significant (6.8 days).

VR effect

The flanking markers of VRQTL_5A were Xmtal3 and
Xgwm?271b. Forty-nine lines had the Rn allele at both
loci. Twenty-four of them (49%) never headed, eight
headed only the second year and 17 (35%) headed for
the 2 years. Seventy-seven lines had the Rc alleles.
Among them, 62 (93%) headed for the 2 years, whereas
the remaining 7% never headed. The mean values of the
VR criterion were 0.21 and 0.61 for the 49 and 67 lines,
respectively. If comparing to HD under the vernaliza-
tion treatment, HD was delayed for March sowing due
to incomplete vernalization. The mean delay of these 49
lines was 52.9 days, whereas it was 17.5 for the 62 lines.
The phenotypic effect of the VRQTL_S5D was thus
estimated at 35.4 days of additional delay.

Discussion
Phenotypic HD results

‘Renan’ and ‘Récital’ are much contrasted relative to the
three components of earliness. ‘Récital’ is commonly an
early variety, having a very low PS, a medium VR and a
high IE. The low PS of ‘Récital’ could come from its
Mexican parent ‘R-267" (Zeller et al. 1993). Mexican
wheat cultivars are known to carry genes providing
unsensitivity to photoperiod (Law and Worland 1997).
‘Renan’ has a quite high PS, a very high VR and a low
IE. Its very high VR could come from its Russian
parent, ‘Mironovskaya 808" (INRA 1997). ‘Mironovs-
kaya 808 has been largely studied as winter genotype by

Stelmakh and Avsenin (1983) cited by Stelmakh (1998)
with a high VR (Kosner and Pankova 1998).

PS and IE were continuous traits in the population.
Conversely, the VR trait showed all or none character-
istics. Indeed, under partial vernalization, only a part of
the population headed, whereas the other part stayed at
a vegetative status. For lines that headed, VR had a
continuous normal pattern.

QTL detection

Overall considerations

Between four and five QTL were detected depending on
the trait studied. These values are similar to the mean
values computed on 47 published studies almost exclu-
sively on diploid plant species by Kearsey and Farquhar
(1998).

Groups 2, 5, and to a lesser extent, group 7 chro-
mosomes are known to have a major role in the devel-
opmental control in wheat (Law and Worland 1997). In
the ‘Renan’ x ‘Récital’ population, QTL were mapped
on 8 chromosomes, of which seven are of these three
groups.

PS

The study of HD from October sowings resulted in the
detection of four QTL. The two QTL located on 2B and
2D detected for the three experimental years can be
considered as major QTL. Together they explained be-
tween 32% to 38% of the phenotypic variation. From
cytogenetical works, the important effect on PS of
chromosomes 2B (Welsh et al. 1973) and 2D (Law 1966)
has been well established. Worland (1996) and Worland
et al. (1998) mapped the major genes Ppd_ DI (formerly
Ppdl) on 2D and Ppd_ Bl (formerly Ppd2) on 2B, with
RFLP markers, using single-chromosome recombinant
lines for chromosomes 2B of ‘Chinese Spring’ and 2D of
‘Mara’ in a common ‘Cappelle’—Desprez’ background.



Microsatellite markers are now the most widely used
markers, and links between RFLP and microsatellite
maps can be established through maps like that devel-
oped by Roder et al. (1998). Using such a map, it
appears that the two main PS QTL (PSQTL_2D and
PSQTL_2B) were located in the same region as the Ppd
genes. Alleles of ‘Récital’ conferred a higher earliness.

Probably, ‘Récital’ has a Ppd_ D1 allele, as suspected
by Worland et al. (1994), and possibly a Ppd_ Bl allele,
too. The mean effect of PS QTL 2D in the ‘Re-
nan’ X ‘Récital’ population (5.1 days) was completely in
accordance with values estimated by Worland (1996).
Depending on genetic background and trials, the effect
of Ppd_ DI was between 4.6 days and 7.8 days. Worland
(1996) estimated the effect of the Ppd_ Bl gene, too.
Thus, in a ‘Cappelle’—Desprez’ background, while the
effect of Ppd_ D1 was 7.8 days, the effect of Ppd_ Bl was
6.2 days. In the same way (in this paper) the mean
PSQTL_2B effect (4.1 days) was inferior to the
PSQTL_2D one. Worland (1996) mentioned that the
effect of accumulating two or more Ppd genes has never
been tested. Nevertheless, through cytogenetical works,
Welsh et al. (1973) found that Ppd_ DI was epistatic to
the other alleles, and Law et al. (1978) found that
Ppd genes were dominant, fully or partially inhibiting
the PS. Results obtained in the present study suggest
that there is an epistatic relationship between Ppd D1
and Ppd_ Bl. Ppd_ D1 is highly epistatic toward Ppd_BI
(no significant effect of PSQTL_2B with the ‘Récital’
allele at PSQTL_2D) but in an incomplete way: in this
study there was a cumulative effect of these two genes
(joint effect of 9.2 days compared to marginal effect of
6.8 days and 5.9 days for PSQTL_2D and PSQTL_2B,
respectively).

The 7D PS QTL detected in this study was also de-
tected by Gervais et al. (2003). Until now, the last PS
QTL detected here on 5A had never been reported.
Moreover, given the respective position of this PS QTL
and Vrn_ Al, there is no possible confusion between
them.

VR

The most potent genes determining VR pertain to the
homoeologous group 5 series of Vrn genes (Pugsley
1971, 1972; Law et al. 1976).

In this study, a major VR QTL (VRQTL_5A),
explaining 22% to 40% of the phenotypic variation, has
been detected on 5A. Nelson et al. (1995) and Galiba
et al. (1995) mapped Vrnl (renamed Vin_ Al by
Mclntosh et al. 1998) on SA. The major QTL detected in
our study likely would correspond to the Vinl gene.
Snape et al. (1976) showed that the Vin_ Al gene is
predominant in reducing the VR in European wheat
varieties. Kosner and Pankova (1998) mentioned that
the Vrn_ A1 gene is epistatic and inhibits completely VR.
This is not the case in the ‘Récital’ x ‘Renan’ popula-
tion, since none of the lines headed under the unver-
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nalized treatment, and there was always a delay due to
incomplete vernalization. Nevertheless, Stelmakh (1993)
stated that the effect of the Vrnm genes on VR was
dependent on the PS of the genetic background. Indeed,
a Vrn gene in a photosensitive background gives an
alternative phenotype; if the background is photoin-
sensitive, cultivars have a spring phenotype but late. In
the present study, no epistatic relationship between Ppd
and Vrn genes was detected at a significant level. These
results could also suggest that there would be various
alleles at the Vrn_ A1 locus or a second gene as identified
on the A genome by Shindo et al. (2002).

On 5B, the Vrn-BI gene (formerly Vrn2) was recently
finely mapped by Barrett et al. (2002), Leonova et al.
(2003) and Toth et al. (2003). The frost resistance gene
(Fr-BI) was mapped by Toth et al. (2003). The VR QTL
detected on 5B in the ‘Renan’ X ‘Récital’ population is
not located in the same position as the Vrn-BI gene but
rather in the same position as the Fr-Bl gene. On 5B,
these two genes are quite distant one from the other
(more than 40 cM).

When using common microsatellite markers from
Roder et al. (1998) and Snape et al. (2001) maps, in the
‘Renan’ x ‘Récital’ population, the VR QTL detected
on 5D is distant from more than 100 cM of frost resis-
tance or VR genes. Then, on 5D, the VR QTL detected
in this study does correspond neither to Vrn-DI nor to
Fr-DI mapped by Snape et al. (2001).

The two last VR QTL were detected on 2B and 6D.
Using cytogenetic studies, chromosome 6D (Law and
Worland 1997), as well as group 2 chromosomes
(Kuspira and Unrau 1957; Halloran and Boydell 1967),
were found to have an effect on VR control. Neverthe-
less, up to now, no VR QTL or genes have been mapped
on these two groups of chromosomes, except recently
one QTL on 2B in a connected population by Hanocq
et al. (2003). This QTL was located in a similar position
as the VR QTL detected on the ‘Renan’ x ‘Récital’
population.

IE

The two main IE QTL have been located in the same
position as PSQTL_2B and PSQTL_2D, probably cor-
responding to Ppd-BI and Ppd-DI genes. Shindo et al.
(2003) also found an IE QTL close to Ppd-BI. Three
hypotheses can be put forth. Firstly, IE genes do exist
closed to the Ppd genes, and they have a quite large
effect. Shindo et al. (2003) concluded that. Conse-
quently, they also concluded that there was an effect of
IE for autumn sowings. Nevertheless, in their study, IE
was significantly correlated to PS and VR (all traits
registered in completely controlled conditions), which is
not in agreement with the definition of IE. Secondly, the
location of IE QTL can be due to a pleiotropic effect of
Ppd genes as mentioned by Worland (1996). Thirdly,
confusion between PS and IE effects can be suspected.
Likely, HD for fully artificially vernalized plants, placed
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in field in May, would be partially controlled by pho-
toperiod aspects. Indeed, day length in May in northern
France is not optimal for cereal growth. To study this
last hypothesis, a new variable was derived from HD
measured for the May planting originally considered as
an IE measurement. This new variable can not be con-
sidered either as a measure of HD for the May planting,
but it is derived from it and it is not statistically corre-
lated to PS and VR aspects according to the narrow-
sense definition of IE. No more QTL were then detected
on 2B and 2D. These results would suggest that there
was a real mixing between PS and IE measurements.
Eventually, would this new variable be a better measure
of IE? The poor correlation between years for this new
variable does not strengthen this idea.

The last two IE QTL, on 5B and 7A, were located in
the same position of QTL already known in wheat (Toth
et al. 2003) and/or barley (Laurie et al., 1995). The 5B
QTL is in the same region as both an IE QTL and the
epsSL QTL detected in wheat and in Barley, respectively.
On 7A, the IE QTL is syntenic to the eps7S QTL of
Laurie et al. (1995). These two QTL were not detected
when analyzing the transformed HD registered in May.
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